

سلّم تصحيح مادّة الفيزياء لشهادة الدّراسة الثّانويّة العامّة الفرع العلميّ (الدورة الثانية) عام ٢٠٢٢م

	. Y.	/الفرع الع <i>لميّ</i> / عام ٢٢	العامة	الثّانه سّة	حان شهادة الدّر اسة	المتد امتد		
الدّرجة: أربعمئة	F .	السرع المستوار عام ۱۰۰		-,	ــن ۱۳۹۳ مرسد ية)	ة الثان	ات مادّة: الفيزياء (الدور	ىلّم درج
<i>v</i> (m.s ⁻¹)	درجة)	ى ورقة إجابتك: (·· ٥	للها إلى	<i>ي</i> ، وإنة	عيحة لكلِّ ممّا يأت	الصد	الأوّل: اختر الإجابة	السؤال
+0.08π	- ► t(s)						مثل الشكل البياني الم	
-0.08π			وي:	تسا X	ة لهذا الجسم _{max}	الحرك	إفقية بسيطة فإنّ سعة	تو
0.16m	d	0.08m	С		0.04 m	b	0.02 m	а
							لغ طول مركبة فضائية	
خلاء فيجد انه يساوي	ضوء في الـ	، من سرعة انتشار ال د	ة قريبة				ولها (وفق منحی شعار $L=10\mathrm{m}$	
200	d	30	С		10	b	2	а
مكثفة أُخرى C^2	دل بالمكثفة	مها الخاص $\omega_{_0}$ ، نستب	نبخ L	ذاتيتها	عتها C ، ووشيعة	ثفة س	ألّف دارة مهتزة من مك	<u> </u>
		ىاوياً:	∞ میں	الجديد	النبض الخاص	<u>صبح</u> ا	عتها $C^{\;\prime}=4C$ فر	س
$\frac{\omega_0}{4}$	d	$\frac{\omega_0}{2}$	С		ω_0	b	$2\omega_0$	а
•					1		لغ عدد لفات أولية مح	
: <u>`</u>	يساوي $U_{\it eff}$	_ة بين طرفي ثانويتها ،	المنتج	ة التوتر	فتكون قيما $U_{\it eff}$	$r_p = 3$	مته المنتجة 3000V	قي
100 V	d	1000 V	С		3000 V	b	3750 V	а
	ساوي:	اسياً طول موجته λ ي	موتاً أس	ل م	يصدر وتراً طوله	مقيدة	ي تجربة ملد مع نهاية	5- فې
$\frac{1}{2}L$	d	L	С		2L	b	4L	а
		0.04	أو m	١.			ь	-1
		2		١.			a	-2
		$\frac{\omega_0}{2}$					С	-3
		$\frac{100}{2L}$		1.			<u>d</u>	-4
		21.	أو: ،	٥,	جات السؤال الأوّل	<u>وع در.</u>	<u>هجم</u>	-5

درجة)	۳٠	الثاني: (لسؤال
-------	----	-----------	-------

		السيؤال الثاني: (٣٠ درجة)
		m نعلق كرة صغيرة كتلتها m كثافتها النسبية كبيرة إلى طرف
· · · · · · · · · · · · · · · · · · ·		الكرة لنشكّل بذلك نواساً ثقلياً بسيطاً عمليّاً. المطلوب: a) ما
ة صغيرة $\theta \leq 0.24\mathrm{rad}$ برهن أنّ الحركة جيبية دورانيّة،	ت زاويّا	انطلاقاً من العلاقة: $\sin heta \sin heta = -rac{g}{\ell}\sin heta$ ومن أجل سعاد (${f b}$
		ثمّ استنتج علاقة الدور الخاص للاهتزاز.
		نقطة مادية تهتز بتأثير ثقلها على بعد ثابت ℓ من ℓ
	٣	محور أفقي ثابت
		$(\overline{\theta})_t'' = -\frac{g}{\ell} \sin \theta$ (b
		$ heta_{ m max} \leq 0.24{ m rad}$ من أجل السعات الزاوية الصغيرة
	,	$\sin \theta \simeq \theta$
	۳	$\dots (\overline{\theta})_{t}'' = -\frac{g}{\ell} \theta \dots (1)$
	,	معادلة تفاضلية من المرتبة الثانية تقبل حلاً جيبياً من الشكل:
	۲ ا	$\overline{\theta} = heta_{ m max} \cos(\omega_0 t + arphi)$ $\overline{\theta} = heta_{ m max} \cos(\omega_0 t + arphi)$
	۲	$ u = v_{\text{max}}\cos(\omega_0 t + \varphi) $ للتحقق من صحة الحل نشتق مرتين بالنسبة للزمن
	٣	$(\overline{\theta})_t'' = -\omega_0^2 \; \theta \; \dots $ (2)
	'	بالمطابقة بين 1 و 2 نجد:
		G.
f	٣	$\omega_0^2 = \frac{g}{\ell}$
و الوات المن المن المن المن المناس المناس المناص	۳ ا	$\omega_0 = \sqrt{\frac{g}{\ell}} > 0$
من أجل السعات الصغيرة حركة جيبية دورانية (نبضها	'	ℓ ۷ و فحر که النو اس الثقلی البسیط من أجل السعات الصغیرة حرکه فحر که
(ω_0) الخاص (فحرك النواس اللغني البسيط من اجل السعات الصعيرة حرك جيبية دور انية
	_ ـ	$\omega_0 = \frac{2\pi}{T_0}$
	٣	T_0
	_	$\dots \frac{2\pi}{T_0} = \sqrt{\frac{g}{\ell}}$
	'	
	٥	$\dots T_0 = 2\pi \sqrt{\frac{\ell}{g}}$
	۳.	U
	۲.	مجموع درجات السؤال الثاني
بع والنشر والتوزيع محفوظة لوزارة التّربية	نه ق الطب	(مادّة الفيزياء / الدورة الثانية - عام٢٠٢م) حة

السؤال الثالث: (٣٠ درجة)

يتحرك سائل داخل أنبوب بين مقطعين مختلفين مساحةً s_2 ، s_1 (السائل يملأ الأنبوب ولا يتجمّع فيه). المطلوب:

اكتب علاقة معدّل التدفق الكتلى Q للسائل. b انطلاقاً من العلاقة $Q_1'=Q_2'$ استنتج معادلة الاستمرارية، ثمّ بيّن $Q_1'=Q_2'$ كيف تتغير سرعة تدفق السائل مع مساحة مقطع أنبوب التدفق.

ري $\mathcal{Q}_1 - \mathcal{Q}_2$ السندج معدده الاستمراريد، تم بين		 إكتب عارفة معدل اللدق الكلي في السائل. (ل) الط كيف تتغير سرعة تدفق السائل مع مساحة مقطع أنبوب 			
	0	$Q = \frac{m}{\Delta t} \qquad (a)$			
		$Q_1' = Q_2' \qquad \text{(b)}$			
	٤+٤	$\frac{V_1}{\Delta t} = \frac{V_2}{\Delta t}$			
	٣+٣	$\frac{S_1 V_1 \Delta t}{\Delta t} = \frac{S_2 V_2 \Delta t}{\Delta t}$			
$\frac{S_1}{=} = \frac{v_2}{v_2}$ أو	٦				
$s_2 v_1$		رعة تدفق السائل تتناسب عكساً مع مساحة مقطع الأنبوب			
يقبل أي صيغة رياضية صحيحة	٥	ذي يتدفق منه السائل			
	٣.	مجموع درجات السؤال الثالث			
		سؤال الرابع: (۳۰ درجة)			
لفة متماثلة، معلّق من منتصف أحد ضلعيه N	ى L ، يحوي	ار مستطيل طول ضلعه الأفقى d ، وطول ضلعه الشاقول			
فناطيسي منتظم بحيث تكون خطوطه توازي	فقيتين إلى سلك شاقولى عديم الفتل، نضعه في منطقة يسودها حقل مغناطيسي منتظم بحيث تكون خطوطه توازي				
· · · · · · · · · · · · · · · · · · ·		ىتوي الإطار، ثمّ نمرّر ً في سلك الإطار تيار كهربائي متوا			
		عناطيسي عمودية على مستويه. المطلوب:			
11 11 2 2 2 1 7 1	11 7 11	•			

b) استنتج علاقة عزم المزدوجة الكهرطيسية المؤثرة في الإطار. a) فسّر سبب دوران الإطار · a) يؤثر الحقل المغناطيسي (المنتظم) في الإطار بمزدوجة كهرطيسية...... تنشأ عن القوتين الكهرطيسيتين المؤثرتين في الضلعين الشاقوليتين..... (تعمل على تدوير الإطار حول محور دورانه) (من موضعه) حيث التدفق المغناطيسي معدوم...... إلى وضع يصبح فيه التدفق المغناطيسي (الذي يجتاز سطح الإطار) أعظمياً.. $\Gamma_{\Lambda} = d'F$ $d' = d \sin \alpha$ $\alpha = (\vec{n} \cdot \vec{B})$ $F = N I L B \sin \frac{\pi}{2}$ ٣ $\Gamma_{\Lambda} = N I L d B \sin \alpha$ ۲ $\Gamma_{\Lambda} = N I s B \sin \alpha$ ٥ مجموع درجات السؤال الرابع

۲۰ درجة)	، الآتيين: (أحد السؤالين	أجب عن	الخامس:	لسؤال
----------	--------------	--------------	--------	---------	-------

- لاً وشيعة ذاتيتها L، وعدد لفاتها N، يمرّ فيها تيار كهربائي متغيّر شدّته L المطلوب:
- a) اكتب عبارة شدّة الحقل المغناطيسي المتولّد عن مرور التيار الكهربائي في الوشيعة.
- استنتج عبارة التدفق المغناطيسي لحقل الوشيعة من خلال الوشيعة ذاتها بدلالة ذاتيتها L، وشدّة التيار المار فيها i
 - c) اكتب العلاقة المحدّدة للقيمة الجبرية للقوة المحركة الكهربائية المتحرّضة الذاتية في الوشيعة.
 - 2- تتوقف قابلية امتصاص الأشعة السينية ونفوذيتها على ثلاثة عوامل منها كثافة المادة:
 - b) بيّن تأثير كثافة المادّة على نفوذية وامتصاص الأشعة السينية. a) اكتب العاملين الآخريين.

		سؤال الخامس: أجب عن أحد السؤالين الآتيين: (٢٠ درجة)			
وشیعة ذاتیتها L ، وعدد لفاتها N ، یمر فیها تیار کهربائی متغیّر شدّته i . المطلوب:					
a اكتب عبارة شدّة الحقل المغناطيسي المتولّد عن مرور التيار الكهربائي في الوشيعة.					
		•			
4		b) استنتج عبارة التدفق المغناطيسي لحقل الوشيعة من خلال الوشيع			
الذاتية في الوشيعة.	حرّضة	c اكتب العلاقة المحدّدة للقيمة الجبرية للقوة المحركة الكهربائية المت			
كثافة المادة:	منها	2- تتوقف قابلية امتصاص الأشعة السينية ونفوذيتها على ثلاثة عوامل			
وامتصاص الأشعة السنية.	فوذية	a) اكتب العاملين الآخربين. b) بيّن تأثير كثافة المادّة على ن			
5					
		-1			
		(a			
	٥	$B = 4\pi \times 10^{-7} \frac{Ni}{\ell}$			
		ℓ			
		_ (b			
	٤	$\overline{\Phi} = NBS$			
	۲	$\overline{\Phi} = 4\pi \times 10^{-7} \frac{N^2 s}{\ell} i$ $\overline{\Phi} = L \overline{i}$			
	'				
	٤	$\Phi = Li$			
		(c			
$-d\overline{\Phi}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
$\frac{-}{arepsilon} = -rac{d\overline{\Phi}}{dt}$ أو	٥	$ = -L \frac{di}{dt} $			
dt		dt			
يخسر درجة واحدة فقط عند إغفال إشارة (-)					
	۲.	مجموع درجات السؤال الخامس			
		(a -2			
	٥	- ثخن المادة			
		– طاقة الأشعة			
	0				
		(b			
	٥	- تزداد نسبة الأشعة الممتصة بازدياد كثافة المادة			
	_	 تزداد نسبة الأشعة النافذة منها بنقصان كثافة المادة 			
	٥				
وزبع محفوظة لوزارة التّربية صفحة ٥	۲.	مجموع درجات السؤال الخامس			
وزيع محفوظة لوزارة التربية صفحة ٥	شر والتو	(مادة الفيزياء / الدورة الثانية - عام٢٠٢٢م) حقوق الطبع والنا			

السَّوال السَّادس - حلّ المسائل الآتية: المسألة الأولى: (٧٥ درجة)

- ندير الساق في مستوٍ أفقي بزاوية $\theta = +\frac{\pi}{2} \, \mathrm{rad}$ انطلاقاً من وضع توازنها ونتركها دون سرعة ابتدائية في اللحظة (A نتهتر بحركة جيبية دورانية دورها الخاص $T_0 = 1$. المطلوب: t=0
 - 1- استنتج التابع الزمني للمطال الزاوي انطلاقاً من شكله العام.

- 2- احسب قيمة السرعة الزاوية للساق لحظة مرورها الأوّل بوضع التوازن.
- . حسب قيمة التسارع الزاوي للساق عندما تصنع زاوية $\theta = -\frac{\pi}{4}$ rad عندما تصنع توازنها θ
- نثبت بطرفي الساق كتلتين نقطيتين $m_1 = m_2 = 100$ فيصبح الدور الخاص الجديد للجملة المهتزة $T_0' = 2$ فإذا علمت (\mathbf{B} أنّ عزم عطالة الساق حول محور عمودي عليها ومار من منتصفها $I_{_{\Delta/C}}=rac{1}{12}M\;L^2$ وباعتبار أنّ $\pi^2=10$ ، استنتج قيمة M كتلة الساق

	السَّوال السَّادس - حلّ المسائل الآتية: المسألة الأولى: (٥٧ درجة)			
Ħ	ساق أفقية متجانسة طولها L ، كتاتها M معلّقة من منتصفها بسلك فتل شاقولى.			
Ħ	ندير الساق في مستوِ أفقي بزاوية $ heta=\pm rac{\pi}{2}$ انطلاقاً من وضع توازنها ونتركها دون سرعة ابتدائية في اللحظة ($oldsymbol{A}$			
Ħ	ي يو سي $\frac{1}{2}$ ي ي ي يو $\frac{1}{2}$ ي ي ي ي ي ي ي ي ي ي ي ي ي ي ي ي ي ي ي			
8	استنتج التابع الزمني للمطال الزاوي انطلاقاً من شكله العام. -1			
Ħ	احسب قيمة التسارع الزاوي للساق عندما تصنع زاوية $ heta=-rac{\pi}{4}$ rad عندما تصنع زاوية احسب قيمة التسارع الزاوي للساق عندما تصنع زاوية الم			
Ħ	$\frac{4}{4}$ نثبت بطرفي الساق كتلتين نقطيتين $m_1 = m_2 = 100$ فيصبح الدور الخاص الجديد للجملة المهتزة $m_1 = m_2 = 100$ فإذا علمت (B			
	ق عن عطالة الساق حول محور عمودي عليها ومار من منتصفها $I_{\Delta/C}=rac{1}{12}M$ وباعتبار أنّ $\pi^2=10$ ، استنتج قيمة			
	كتلة الساق M .			
8				
	$\overline{\theta} = \theta_{\text{max}} \cos(\omega_0 t + \overline{\varphi}) \qquad -1$ $t = 0 , \omega = 0$			
	$\theta_{\text{max}} = \theta = \frac{\pi}{2} (\text{rad})$			
F				
	$\omega_0 = rac{2\pi}{T_0}$			
	$\omega_0 = \frac{2\pi}{1}$			
	, $\omega_0 = 2\pi \text{ rad.s}^{-1}$			
Ħ	, $t=0$, $\theta= heta_{ ext{max}}$			
	$ heta_{ ext{max}} = heta_{ ext{max}} \cos arphi$			
8	$\cos \varphi = 1$			
	$\varphi = 0 \text{(rad)}$			
	$\overline{\theta} = \frac{\pi}{2}\cos(2\pi t) \text{(rad)}$			
	مجموع درجات الطلب الأول ٥٧			
Ħ	heta في وضع التوازن $ heta=0$			
	$\frac{\pi}{2}\cos 2\pi t = 0$			
81	$\cos 2\pi t = 0$			
	$2\pi t = \frac{\pi}{2} + \pi k$			
Ħ	\bar{b} أول مرور $k=0$ أول مرور			
	$2\pi t = \frac{\pi}{2}$			
	$, \qquad \qquad t = \frac{1}{4}s$			
	$\omega = -\omega_0 \theta_{\text{max}} \sin(\omega_0 t + \varphi)$			
	$\omega = -2\pi (\frac{\pi}{2})\sin(2\pi \times \frac{1}{4})$			
Ħ	$\omega = -10 \mathrm{rad.s^{-1}}$			
Ħ	مجموع درجات الطلب الثاني ه ١			
	(مادّة الفيزياء / الدورة الثانية - عام٢٠٢٢م) حقوق الطبع والنشر والتوزيع محفوظة لوزارة التّربية صفحة٦			

	٥	$\overline{\alpha} = -\omega_0^2 \overline{\theta}$
	٣	$\overline{\alpha} = -(2\pi)^2(-\frac{\pi}{4})$
	1+1	$\frac{\overline{\alpha}}{10\pi} = 10\pi \text{ rad.s}^{-2}$
	١.	مجموع درجات الطلب الثالث
لعلاقة الدور الخاص (تعطى ضمناً)	٣	$T_0 = 2\pi \sqrt{\frac{I_{\Delta}}{k}} $ (B)
	٥	$\frac{T_0}{T_0'} = \sqrt{\frac{I_\Delta}{I_\Delta'}}$
	٣	
		$4I_{\Delta} = I_{\Delta}'$
	٣ + ٣	$4I_{\Delta/C} = I_{\Delta/C} + 2m_1 \frac{L^2}{4}$
	٣	$3 \times \frac{1}{12} ML^2 = \frac{1}{2} m_1 L^2$
		$M = 2m_1$
	٣	
	1+1	الملب B مجموع درجات الطلب
	٧٥	مجموع درجات المسألة الأولى

لمسألة الثانية: (٩٥ درجة)

نصل طرفي مأخذ تيارمتناوب جيبي توتره المنتج $U_{\it eff}=100$ ، وتواتره f=50 إلى دارة تحوي على التسلسل مقاومة أومية R، ومكثفة سعتها $C=\frac{1}{4000\pi}$ فيكون التوتر المنتج بين طرفي المكثفة $U_{\it eff_c}=80$. المطلوب:

- X_C احسب اتساعية المكثفة X
- . التيار المار في الدارة $I_{\it eff}$ ، ثمّ اكتب تابع الشدّة المنتجة للتيار المار في الدارة $I_{\it eff}$
- . R احسب قيمة التوتر المنتج بين طرفي المقاومة U_{eff_R} باستخدام إنشاء فرينل، ثمّ احسب قيمة المقاومة الأومية -3
- -4 نضيف على التسلسل إلى الدارة السابقة وشيعة مناسبة مقاومتها الأومية مهملة، ذاتيتها L بحيث تبقى الشدّة المنتجة للتيار نفسها، احسب ذاتية الوشيعة المضافة L.

		L للتيار نفسها، احسب ذاتية الوشيعة المضافة	
	٥	$X_c = \frac{1}{\omega C}$ -1	
	٥	$\omega = 2\pi f$	
	٣	$\omega = 2\pi \times 50$	
	1+1	$\omega = 100 \pi \text{ rad.s}^{-1}$	
	٣	$ X_c = \frac{1}{100\pi \times \frac{1}{4000\pi}} $	
	1+1	$\dots X_c = 40 \Omega$	
	۲.	مجموع درجات الطلب الأول	
	٥	$ U_{eff_c} = X_c I_{eff} $ -2	
	٣	$I_{eff} = \frac{80}{40}$	
	1+1	$I_{eff} = 2A$	
	٣	$I_{\text{max}} = I_{eff} \sqrt{2}$	
	۲	$I_{\text{max}} = 2\sqrt{2} (A)$	
	٥	$\overline{i} = 2\sqrt{2}\cos 100\pi t (A)$	
	۲.	مجموع درجات الطلب الثاني	
للرسم المتكامل	٥	$ \begin{array}{c} U_{eff_R} \\ U_{eff_c} \end{array} $ $ \begin{array}{c} \overline{i} \\ U_{eff_c} \end{array} $	3
	٥	$U_{eff}^{2} = U_{eff_{C}}^{2} + U_{eff_{R}}^{2}$	
	٣	$10000 = 6400 + U_{eff_R}^2$	
	1+1	$U_{eff_R} = 60 \text{ V}$	
	٥	$R = \frac{U_{eff_R}}{I}$	

	<u></u>	$R = \frac{60}{2}$
	٣	_
	1+1	$\ldots R = 30 \Omega$
	70	مجموع درجات الطلب الثالث
		-4
	٣	
	٥	•
	٣	$X_L - X_C = +X_C$
	۲	$X_L = 2X_C$
	٣	$X_L = 2(40)$
	1+1	$X_L = 80 \Omega$
		او V V V
	١,	
)	$X_L = 0$ مرفوض
	٥	
	٣	$L = \frac{80}{100 \ \pi}$
		т _ 4 п
	1+1	$L = \frac{4}{5 \pi} H$
		
	٣,	مجموع درجات الطلب الرابع
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	40	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	40	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	90	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	40	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
	40	مجموع درجات الطلب الرابع مجموع درجات المسألة الثانية
وظة لوزارة التربية صفحة ٩	الطبع والنشر والتوزيع محة	

المسألة الثالثة: (٣٠ درجة)

نضع في مستوي الزوال المغناطيسي الأرضي سلكين طويلين متوازيين بحيث يبعد منتصفاهما (c_1,c_2) عن بعضهما البعض مسافة $d=80\,\mathrm{cm}$ ، نمرّر في السلك الأول تيار كهربائي $d=80\,\mathrm{cm}$ شدّته $I_1 = 6$ A وبجهة واحدة. المطلوب: شدّته $I_2 = 2$ A وبجهة واحدة المطلوب:

- . c المعناطيسي المتولِد عن التياربن في النقطة -1
- 2- احسب الزاوية التي تنحرف فيها إبرة البوصلة عن منحاها الأصلى، بفرض أنّ قيمة المركّبة الأفقية للحقل المغناطيسى $B_H = 2 \times 10^{-5} \text{ T}$ الأرضى
 - -3 حدّد النقطة الواقعة بين السلكين التي تنعدم فيها شدّة محصلة الحقلين.

		-1
	0	$B = 2 \times 10^{-7} \frac{I}{d}$
	٣	$B_1 = 2 \times 10^{-7} \frac{6}{0.4}$
		$B_1 = 3 \times 10^{-6} (\text{T})$
	۳	$B_2 = 2 \times 10^{-7} \frac{2}{0.4}$
	,	$B_2 = 1 \times 10^{-6} (\text{T})$
		$B = B_1 - B_2$
	1	$B = 3 \times 10^{-6} - 1 \times 10^{-6}$
	1+1	$B = 2 \times 10^{-6} \text{ T}$
	۱۸	مجموع درجات الطلب الأول
		2- قبل إمرار التيار: تستقر الإبرة وفق منحى المركبة الأفقية للحقل المغناطيسي الأرضي بعد إمرار التيار: تدور الإبرة المغناطيسية بزاوية θ وتستقر وفق منحى الحقل المحصتل.
	٣	$\tan\theta = \frac{B}{B_H}$
	۲	$\tan \theta = \frac{2 \times 10^{-6}}{2 \times 10^{-5}}$ $\tan \theta = 0.1 < 0.24$
	,	$\tan \theta = 0.1 < 0.24$ $\theta = 0.1 \text{ rad}$
	٦	مجموع درجات الطلب الثاني
		-3
	٣	$B_1 = B_2$
		$2 \times 10^{-7} \frac{6}{d_1} = 2 \times 10^{-7} \frac{2}{d_2}$
	١	$d_1 = 3d_2$
	١	$d_1 + d_2 = 0.8$ ولدينا
$d_1 = 0.6 \mathrm{m}$:		$d_2 = 0.2 \mathrm{m}$
	٦	مجموع درجات الطلب الثالث
	٣.	مجموع درجات المسألة الثّالثة

المسألة الرابعة: (٤٠ درجة)

- 1- طول موجة الصوت البسيط الصادر عن المزمار.
 - 2- طول المزمار.
 - 3- تواتر الصوت البسيط الصادر عن المزمار.
- 4- طول مزمار آخر ذي فم نهايته مغلقة يحوي هواء في درجة الحرارة نفسها، يُعطي صوتاً أساسيّاً مواقتاً للصوت الصادر عن المزمار السابق.

		<u>المسألة الرابعة:</u> (٤٠ درجة)
$v = 340 \mathrm{m.s^{-1}}$ ة، ينتشر فيه الصوت بسرعة	مناسبة	يصدر مزمار ذو فم نهايته مفتوحة صوتاً بإمرار هواء بدرجة حرارة
	اب:	فيتكون داخله عقدتان للاهتزاز البُعد بينهما 50 cm. المطلوب حس
		-1 طول موجة الصوت البسيط الصادر عن المزمار .
		2- طول المزمار .
		3- تواتر الصوت البسيط الصادر عن المزمار.
فسها، يُعطي صوبًا أساسيًا مواقتًا للصوب الصادر	حرارة نف	4- طول مزمار آخر ذي فم نهايته مغلقة يحوي هواء في درجة الـ
		عن المزمار السابق.
		-1
	٥	$\frac{\lambda}{2}$ البعد بين عقدتين
	٣	$\frac{\lambda}{2} = 50 \times 10^{-2}$
	۱+۱	$\begin{vmatrix} 2 \\ \lambda = 1 \text{ m} \end{vmatrix}$
	١.	مجموع درجات الطلب الأوّل
		-2
	٥	$L = n \frac{\lambda}{2}$
	٣	$L = 2 \times 50 \times 10^{-2}$
	1+1	$L=1\mathrm{m}$
	1.	مجموع درجات الطلب الثاني
		-5
	٥	$f = n \frac{v}{2L}$
		n=2
	w	
	٣	$f = 2 \times \frac{340}{2 \times 1}$
	1+1	$f = 340 \mathrm{Hz}$
	١.	مجموع درجات الطلب الثالث
		-4
	٥	$f = (2n-1)\frac{v}{4L'}$
		$L' = (2n-1)\frac{v}{4f}$
	٣	$L' = (2(1)-1)\frac{340}{4\times170}$
		$L' = (2(1)^{-1})^{4} \times 170$ $L' = 0.25 \mathrm{m}$
		مجموع درجات الطلب الرابع
	٤.	مجموع درجات المسألة الرّابعة
		., ., ., ., ., ., ., ., ., ., ., ., ., .
		- انتهى السُلّم -
	• • • •	and the state of the
ر والتوزيع محفوظة لوزارة التربية صفحة١١	ع والنشر	(مادّة الفيزياء / الدورة الثانية - عام ٢٠٢٢م) حقوق الطب

- ملحوظات عامة الفقاء من والمدة فقط رئينها به المحال المحال في المسائل فقط.

 7- لا يضلى الفقال على الفقاء من والمدة فقط رئينها به المحال المحال على ملاحة غطر.

 7- لا يضلى الطلب على العال الإشارة المحيرية.

 8- الخلف السواح بين مسر وجه أنتوريس في ملاحة غطر.

 8- المحال المقطب المحين مسر وجه المتوريس والجواب المرة والمدة ويقتل المحدي مسجوعاً.

 8- المحال المقطب المحين المحال المسائل بغضر مرجه المتورس والجواب المرة والمدة ويقتب الأرف في الوزارة في المسائل المحروب المتورس والجواب المرة والمدة ويقتب الأرف في الوزارة في المسائل والمربوب المرة والمدة ويقتب المحروب الأرف المردوب المراف المحال المواجب المحال ا