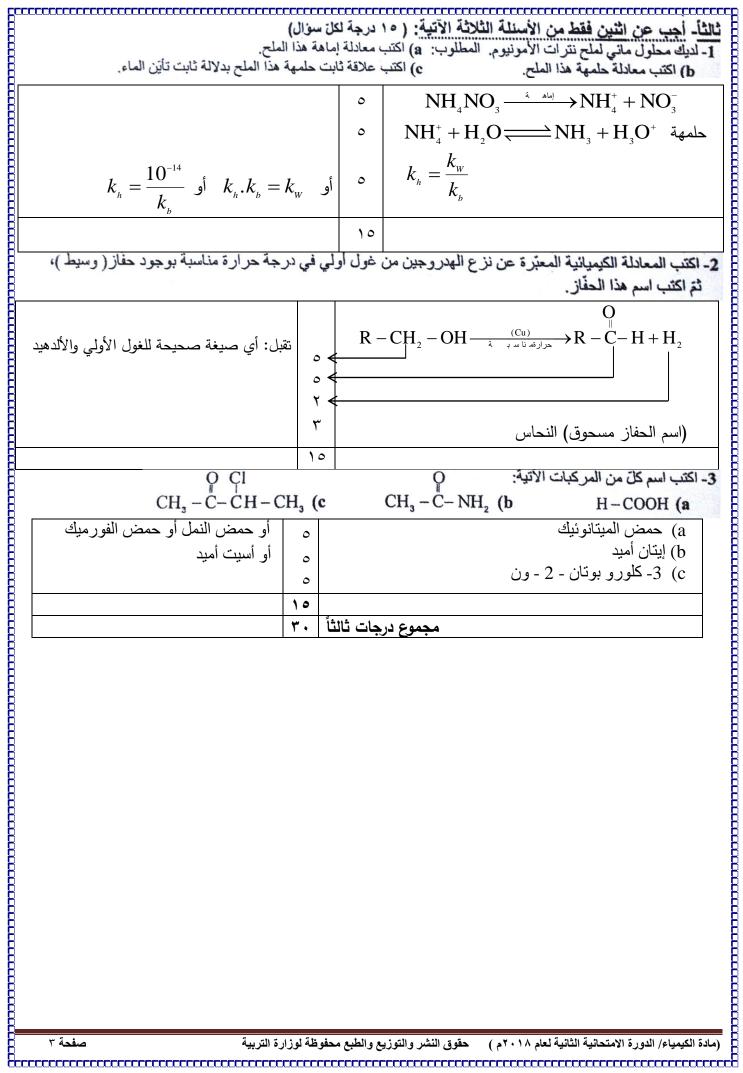


الجمهورية العربية السورية سلّم تصحيح مادة الكيمياء سلّم تصحيح مادة الكيمياء الشهادة الدراسة الثانوية العامة الفراء الفرع العلمي الشهادة الدراسة الثانية عام ٢٠١٨م الدورة الثانية عام ٢٠١٨م الدورة الثانية عام ٢٠١٨م الدرجة: مئتان الدرجة: مئتان علم الدرة المنطقة المردة المنطقة المنطقة المردة المنطقة المن

	الدرجة: مئتان تك: (۲۰ درجة)	۲۰۱۸ قة اجار	سلّم درجات مادة الكيمياء /الفرع العلمي / الدورة الثانية لعام الله وراد الما الله الله علم الله وراد الإجابة الصحيحة لكلّ مما يأتي، وانقلها إلى ورا
3>	d) البروبانون.	ل	المركب الذي يُرجع كاشف تولِن: (a) الإيتانول (b) حمض الإيتانونيك (c) الإيتانا الإيتانول الشمس تشع طاقة مقدار ها 10 ²⁷ J في كل ثانية
			فإنّ مقدار النقص في كتلة الشمس خلال 3 min يساوي: فإنّ مقدار النقص في كتلة الشمس خلال 3 min يساوي: 011 kg (c $^{-38}\times10^{35}$ kg (b $^{-76}\times10^{12}$ kg (a
	لا تقبل الإجابات المتناقضة	١.	(c) (1 أو الإيتانال
		١.	$-76 \times 10^{12} \text{kg}$ da (2)
		۲.	مجموع درجات أولاً
	(۱۰ درجات لکلّ سؤال) 4 حدیث درجات لکلّ سؤال)	[ياً: أجب عن ثلاثة فقط من الأسئلة الأربعة الآتية:
	، تم اكتب نوع هذا النفاعل النووي	He+	$_{7}^{1}$ - أكمل ووازن المعادلة النووية الأتية: $_{1}^{1}$ $_{1}^{1}$ $_{2}^{1}$ $_{3}^{1}$
]	تقبل: H.E لا تقبل طاقة	۲×٤	$\frac{{}_{2}^{4}}{1}He + \frac{\overline{\smash{\big }\!$
		۲	(تفاعل) تطافر
		١.	
_			ر. لديك محلول ماني مشبع لملح كلوريد الرصاص شحيح الذوبان. a) اكتب معادلة التوازن غير المتجانس لهذا الملح. (b) اكتد
	PbCl يخسر خمس درجات ويُتابع له	٥	$PbCl_2 \longrightarrow Pb^{2+} + 2Cl^- (a)$
		٥	$k_{sp} = [Pb^{2+}][Cl^{-}]^{2}$ (b
	طبيّة.	صيّة الق	- اعطِ تفسيراً علمياً لكلُّ ممّا يأتي: a) تزداد سرعة التفاعل الكيم (b) جميع الأملاح تتمتّع بالخا
	وي طاقة صحيحة	ِ أو تسا	a) (عند رفع درجة الحرارة) يزداد عدد التصادمات بين الجزيئات سرعة حركتها كما يزداد عدد الجزيئات التي لها طاقة حركية أكبر التنشيط وبالتالي يزداد عدد التصادمات الفعّالة (وهذا يؤدي إلى زبل للنّ الملح مركب أيوني يتألف (من شقّين): شق (أساسي) موجب (أيون معدني أو أكثر)
	(في شروط مناسبة). المطلوب: دة السرعة الابتدائية لهذا التفاعل.		لديك التفاعل الأولي الممثّل بالمعادلة الآتية: $O_{2(g)} o 2NO_{2(g)} + O_{2(g)} + O_{2(g)}$ اقترح طر (a) اكتب علاقة السرعة الابتدائية لهذا التفاعل.
	إغفال التربيع يخسر ست درجات	٦	$v = k[NO]^2[O_2] $ (a
	تقبل أي طريقة صحيحة	٤	b) زيادة درجة حرارة التفاعل.
			أو زيادة تراكيز المواد المتفاعلة.
			أو زيادة الضغط.
		١.	
		٣.	مجموع درجات ثانياً
=	ة التربية صفحة ٢	ظةلوزار	دة الكيمياء/ الدورة الامتحانية الثانية لعام ٢٠١٨) حقوق النشر والتوزيع والطبع محفو

ب عن اثنين فقط من الأسئلة الثلاثة الآتية: (١٥ درجة لكل سؤال)


1- لديك محلول ماني لملح نترات الأمونيوم. المطلوب: a) اكتب معادلة إماهة هذا الملح.

(b) اكتب معادلة حلمهة هذا الملح.

(c) اكتب معادلة حلمهة هذا الملح.

(d) اكتب معادلة حلمهة هذا الملح.

	٥	$NH_4NO_3 \xrightarrow{i \text{ alg}} NH_4^+ + NO_3^-$
	٥	$NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+$ حلمهة
$k_{_h}=rac{10^{^{-14}}}{k_{_b}}$ أو $k_{_h}.k_{_b}=k_{_W}$	٥	$k_{_h} = \frac{k_{_W}}{k_{_b}}$

3- اكتب اسم كل من المركبات الأتية: Ο Cl CH₃ - C- CH - CH₃ (c $CH_3 - \ddot{C} - NH_2$ (b

THE SECOND SECON		
أو حمض النمل أو حمض الفور ميك	٥	a) حمض الميتانوئيك b) إيتان أميد
أو أسيت أميد	٥	
	٥	c) 3- كلورو بوتان - 2 - ون
	10	
	٣.	مجموع درجات ثالثاً

-	$SO_{2(g)}$	$CO_{2(g)}$	CS _{2(r)}	المركب				
	-296	-393 '	+127	ΔH^*_{j} (kJ.mol $^{-1}$) انتالبية التكوّن القياسية				

		ثة ، ٣٥ للرابعة)	انية ، ٣٥ للثال	ولى ، ٣٠ للث	لدرجات: ۲۰ للأ	ائل الأربع الآتية: (ا	ابعاً: حل المس
							مسألة الأولى:
الأتي:	ي الجدول) ، اعتمادا علم	$S_{2(\ell)} + 3O$	$_{2(g)} \rightarrow C$	$O_{2(g)} + 2SO$	مثّل بالمعادلة الأتية: (2(g)	ديك التفاعل الم
			CO _{2(g)}		and the control of the second	المركب	· na myennan
		-296	-393 ·	+127	ΔH_f^* (kJ.)	بية التكوّن القياسية (¹⁻ mol	انتال
9	SO _{2(g)}	فكك القياسية لـ	يمة انتالبية الت	2- ما قب	ية لهذا التفاعل.	احسب تغير الأنتالبية القياس	مطلوب: 1-
ينالها ضمن	٤	ΔH	$r_{r\times n}^{0} = \sum_{n} n_{n}$	$_{p}(\Delta H_{f}^{0})_{p}$ -	$-\sum_{r} n_{r} (\Delta H)$	$\binom{0}{f}_r$	-1
	1×£	$\Delta H_{r\times n}^{0} = \int$	$4\Delta H_f^0$ (C0	$O_2) + 2\Delta H$	$I_f^0(\mathbf{H}_2\mathbf{O})$	$- \left[2\Delta H_f^0(C_2H_2) + 5\Delta H_f^0(C_2H_2) \right]$	$\Delta H_f^0(\mathcal{O}_2)$
	۲×۳	=[(-	-393) + 2((-296)]-	[(127) + 3((0)]	,
	1+1	$\Delta H_{r \times n}^{0} = -$	-1112 kJ				
	١٦						
	۲	$\Delta H_a^0(SO_2)$	$() = -\Delta H_f^0$	(SO_2)			-2
	۲ ٤	ΔH_a^0 (SO	₂) = +2961	$\kappa J. mol^{-1}$			
	7.		مسألة الأه لـ	وع درجات ال	1434		
	<u> </u>						
صفحة ٤			3 511 5 .1 * .1 3 t*		حقوق النشر والتوا	الامتحانية الثانية لعام ٢٠١٨)	5

et t		لثانية:	الة ا
ه في و عاء معلق حجمه ,	مناسبه،	تفاعل الممثّل بالمعادلة الأتية: $3 D_{(g)} \xrightarrow{\frac{1}{2}} 3 D_{(g)}$ عند درجة حرارة	ي ال
ري 2 mol ، وعدد مو تفاجل	ا اندا ا	غ التوازن كان عدد مولات المَّادة A يُسَاويُ mol ُ ، وعدد مولات المادة يساوي mol ، وعدد مولات المادة يساوي mol ،	ند بلو
تى بلوغ التو از ن.	دة B هـ	يساوي mol ع . المطوف محمدات: ٢- قيمه ثابت الدوارن بدارق الطريقين الابتدائي لكل من المماذتين A و B . 3- النسبة المنوية المتفاعلة من الماد	ده D الت ک
			,
	۲	$C=rac{n}{n}$ يز الغازات عند التوازن)	إتراك
		5	
👌 أينما وردت	۲	$[A] = \frac{5}{10} = 0.5 \text{ (mol} \cdot L^{-1})$	
	۲	$[B] = \frac{2}{10} = 0.2 \text{ (mol} \cdot L^{-1})$	
		10	
	۲	$[D] = \frac{3}{10} = 0.3 \text{ (mol } \cdot L^{-1})$	
	٤	$k_{c} = \frac{[D]^{3}}{[A][B]^{2}}$	
		$[A][B]^2$	
		$k = (0.3)^3$	
	٣	$k_{\rm c} = \frac{(0.3)^3}{(0.5)(0.2)^2}$	
1 105		. 27	
$k_{\rm c}=1.35$ أو	1	$k_{c} = \frac{27}{20}$	
	١٦	20	
		$A_{(g)} + 2B_{(g)} \longleftrightarrow 3D_{(g)}$	2
		C_1 C_2 0	
	1×٣	$C_1 - x$ $C_2 - 2x$ $3x$	
	1+1	$3x = 0.3 \implies x = 0.1 \text{ (mol} \cdot \text{L}^{-1}\text{)}$	
	,	$C_1 - x = 0.5$	
		$C_1 = 0.5 + 0.1$	
	1+1	$ extbf{C}_1 = 0.6 \; ext{mol} \cdot extbf{L}^{-1}$ ($ ext{A}$) التركيز الابتدائى لـ	٨
		$C_1 = 0.0 \text{ Mos } 2$ $C_2 - 2x = 0.2$,
	'	_	
		$C_2 = 0.2 + 0.2$	
	1+1	$ extbf{C}_2 = 0.4 \; ext{mol} \cdot extbf{L}^{-1}$ التركيز الابتدائي لـ B التركيز)
	11	100.00	
	۲	$Z = \frac{100 \times 0.2}{0.4} = 50 \text{ mol} \cdot L^{-1}$	3
	١	Z=50% النسبة المئوبة	-
	٣		
	۳.	مجموع درجات المسألة الثانية	
	<u> </u>		
صفحة ·		 الدورة الامتحانية الثانية لعام ٢٠١٨م) حقوق النشر والتوزيع والطبع محفوظة لوزارة التربية 	ی دیاه
		و القول الاستعابية النائية تعام ١٠٠ م) منوى النسر والقرابي والنبي النسب عرب عرارات الرابية	

ى السابق ليصبح تركيزه $^{-1}$ 2 mol.L.	ر ل الحمض	عي تحمص صنعيف ٢٨٨ تركيره الابتدائي ١٠٥٠ المترافقة (أساس معادلة تأيّن هذا الحمض، ثمّ حدّد الأزواج المترافقة (أساس ب قيمة pH هذا المحلول. 3- احسب قيمة ثابت تأ ب حجم الماء المقطر الواجب إضافته إلى mL 80 من محلو	4- احسد
	٤	$HA + H_2O \rightleftharpoons H_3O^+ + A^-$	-1
$(\mathrm{HA}/\mathrm{A}^-)$ او		أساس مرافق(۱) حمض مرافق(۲) أساس(۲) حمض(۱)	
$(\mathrm{H_{3}O^{+}/H_{2}O})$	٨		
	٣	$\alpha = \frac{[H_3O^+]}{C_a}$	-2
			_
	۲	$\frac{2}{100} = \frac{[H_3O^+]}{0.5}$	
	,	$[H_3O^+] = 10^{-2} (\text{mol} \cdot \text{L}^{-1})$	
	٣	$pH = -Log[H_3O^+]$	
	۲	$pH = -Log10^{-2}$	
	17	pH = 2	
$[H_3O^+] = \sqrt{K_a.C_a}$		$[H_2O^+]^2$	
	٣	$\mathbf{K}_{\mathbf{a}} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}]^{2}}{C_{\mathbf{a}}}$	-3
		$K_a = \frac{10^{-4}}{0.5}$	
	۲	$\mathbf{K}_{\mathbf{a}} = \frac{1}{0.5}$	
	•	$K_a = 2 \times 10^{-4}$	
	٦		
	٣	C.V = C'.V'	-4
	\ \ \	بعد قبل التمديد $0.5 \times 80 \times 10^{-3} = 0.2 \text{V}'$	
	,	V' = 0.2 (L) = 200 (mL)	
	١,١	200-80 حجم الماء المضاف	
	1+1	120 mL =حجم الماء المضاف	
	9	בי ובי ולי וויינו אי	
	10	مجموع درجات المسألة الثالثة	

	٣	m = C V M		(1
	1	$M_{\text{NaOH}} = 23 + 16 + 1 = 40 \text{ (g} \cdot \text{mol}^{-1})$		
	۲	$m = 0.1 \times 0.5 \times 40$		
	1+1	m=2 g		
	٨	HOLVION N.C. HO		
	0	$ HCl + NaOH \rightarrow NaCl + H_2O $	(a	(2
		$n_{{ m H}_{3}{ m O}^{+}}=n_{{ m O}{ m H}^{-}}$ (عند نقطة نهاية المعايرة)	(b
	٣	$C_1V_1 = C_2V_2$	`	
	,	$C_1 \times 10 \times 10^{-3} = 0.1 \times 40 \times 10^{-3}$		
	,	$C_1 = 0.4 \text{ mol} \cdot \text{L}^{-1}$		
	1+1			
	V	n = n		С
	٣	$n_{ ext{NaOH}} = n_{ ext{NaCl}}$ $CV = C'V'$	(
	, Y	$0.1 \times 40 \times 10^{-3} = C' \times 50 \times 10^{-3}$		
$C' = \frac{4}{50} \text{mol} \cdot L^{-1}$	1+1	$C' = 0.08 \text{mol} \cdot L^{-1}$		
30	٣	$C_{gL^{-1}} = C_{\text{mol} \cdot L^{-1}}.M_{\text{NaCl}}$		
	,	$M_{NaCl} = 58.5(g.mol^{-1})$		
	۲	$C_{\rm gL^{-1}} = 0.08 \times 58.5$		
	1+1	$C_{gL^{-1}} = 4.68 \text{ g.L}^{-1}$		
	10			
	٣٥	مجموع درجات المسألة الرابعة		
	1	- انتهى السلّم -		

ملاحظات عامة:

- ١- تكتب الدرجات الجزئية لكل سؤال أو جزء منه في دائرة، ثمّ تكتب درجة الحقل مقابل بداية الأسئلة المخصصة
 له على هامش ورقة الإجابة ضمن مربع وتفقيط الدرجة التي ينالها الطالب، وبجانبها توقيع كلّ من المصحح والمدقّق للحقل المُعتمد من قبل ممثّل الفرع.
 - ٢- غلط التحويل يُذهب الدرجة المخصصة للجواب.
 - ٣- تُعطى الدرجات المخصصة للمراحل عند دمجها بشكل صحيح في المسائل.
 - ٤- يُحاسب الطالب على الغلط مرة واحدة فقط وبتابع له.
 - ٥- إذا أجاب الطالب على جميع الأسئلة الاختيارية يُشطب الأخير منها حسب تسلسل إجابة الطالب ويكتب عليه زائد.
 - ٦- لا تُعطى درجة التبديل العددي عند التعويض في علاقة غلط.
 - ٧- عند استخدام رقم غير وارد في المسائل يخسر الدرجة المخصصة في التطبيق ودرجة الجواب لمرة واحدة ويُتابع له.
 - ٨- عند استخدام رمز مُغاير للمطلوب في الأسئلة يخسر درجة واحدة فقط ويتابع له.
 - ٩- إضافة سهم أو إنقاص سهم يخسر درجة واحدة في كلّ معادلة.
 - ١٠- غلط الموازنة يخسر درجة واحدة في كلّ معادلة.
 - ١١- الغلط في شحنة كلّ أيون يخسر درجة واحدة في كلّ معادلة ويُتابع له.
 - ١٢- يُرجع إلى ممثل الفرع في حال ورود طريقة صحيحة لم ترد في السلّم لكي يرسلها إلى التوجيه الأول في الوزارة ليتم دراستها وتوزيع الدرجات المخصصة لها واعتمادها وتعميمها على المحافظات.

توزيع الدرجات على الحقول:

- جواب السؤال أولاً توضع درجته في الحقل الأول.
- جواب السؤال ثانياً توضع درجته في الحقل الثاني.
- جواب السؤال ثالثاً توضع درجته في الحقل الثالث.
- حل المسألة الأولى توضع درجته في الحقل الرابع.
- حل المسألة الثانية توضع درجته في الحقل الخامس.
- حل المسألة الثالثة توضع درجته في الحقل السادس.
- حل المسألة الرابعة توضع درجته في الحقل السابع.

انتهت الملاحظات