منصة بوابة المستقبل

بحث الأعداد العقدية وتطبيقاتها نموذج أ

المادة: الرياضيات

السؤال الأول: ليكن $\alpha = e^{2\pi i}$ ونضع $\alpha = \alpha^4 + \alpha^5$ و $A = \alpha + \alpha^6$ ونضع $A = \alpha^6$ والمطلوب: السؤال الأول: ليكن $A = \alpha^6$

$$.1 + \alpha + \alpha^2 + \dots + \alpha^7 = 0$$
 اثبت أن (1

.(1)
$$x^3 + x^2 - 2x - 1 = 0$$
 ثبت أن A و B و B عذور للمعادلة (2

$$2\cos\frac{2\pi}{7}$$
 ثبت أن المعادلة (1) تقبل حلاً وحيداً موجباً هو (3

$$P(z) = z^4 + 4z^3 + 19z^2 + 30z + 50$$
 السؤال الثاني: ليكن كثير الحدود

$$P(z) = (z^2 + az + b)(z^2 + az + 2b)$$
 عيّن عددين حقيقيين a و b بحيث a بحيث (1

$$.P(z)=0$$
 حل في \mathbb{C} المعادلة (2

$$(1) \quad z^2 - (1+3i)z - 4 + 3i = 0$$
 السؤال الثالث: لتكن لدينا المعادلة

.
$$\omega = 8 - 6i$$
 أوجد الجذور التربيعية للعدد العقدي (1

2) حل في € المعادلة (1).

OAB لتكن النقطتين A و B نقاط المستوي التي تمثل حلول المعادلة (1) ، أثبت أن المثلث OAB قائم ومتساوي الساقين.

السؤال الرابع: نتأمل z و w عددان عقديان طويلة كل منهما تساوي الواحد ، حيث $vz \neq 1$ والمطلوب:

يبت أن العدد العقدي
$$Z = \frac{w+z}{1-wz}$$
 تخيلي بحت. (1

$$.Z=i\sin{\pi\over 5}$$
 نفترض أن $z=e^{i{\pi\over 5}}$ و $z=e^{i{\pi\over 5}}$ اثبت أن $z=e^{i{\pi\over 5}}$

و $a=2e^{-rac{\pi}{6}i}$ النقطتين A و B النقطتين A النقطتين ($O,\overline{u},\overline{v}$) النقطتين مثلهما العددان العقديان $a=2e^{-rac{\pi}{6}i}$

والمطلوب: والمطلوب:
$$aB$$
 والمطلوب: والمطلوب: والمطلوب: والمطلوب: والمطلوب:

- 1) ارسم شكلاً مناسباً وبين طبيعة المثلث OAB
 - $(\vec{u}, \overrightarrow{OI})$ استنتج قياساً للزاوية ($\vec{u}, \overrightarrow{OI}$).
- . I أوجد الشكل الجبري والأسى للعدد العقدى z_I الممثل للنقطة (3
 - $\sin \frac{\pi}{24}$ و $\cos \frac{\pi}{24}$ استنتج (4